

Relaxed-math mode

Overview
● Preserve most of the performance of relaxed-simd
● Enable a path to deterministic semantics
● Most of the content here is effectively just framing

– Framing doesn’t affect performance
– Framing does affect the spec, long term
– There is one thing that isn’t just framing

● Opportunity to revisit NaN bits

The general outlook
● Most instructions in relaxed-simd only need a handful of inline machine instructions to

implement
– For some instructions, nondeterminism only applies in “unlikely” situations

● Can use inline range check + out-of-line slow path
– Others, like min/max, can be done inline

● Aside: encourage Intel and AMD to add IEEE 754 minimum/maximum
– Some hosts will accept these costs in exchange for determinism

● Framing:
– Rename opcodes from “relaxed” to “alternate”
– Push them further out in the binary opcode space
– Put the desired deterministic semantics in the core spec
– Add an optional relaxed-math mode where they’re nondeterministic

fma
● Many cloud/edge hosts

– Always have fma hardware
– Have use cases that benefit from determinism

● Wizer / snapshotting / live migration / replay / etc.

● Some hosts which need extreme determinism
– Aren’t sensitive to floating-point performance

● Framing: Specify fma as the deterministic behavior, with
mul+add as optional behavior in relaxed-math mode

What kind of nondeterminism
● In relaxed-math mode:

– List, or used staged compilation?
– Either way:

● List nondeterminism would at least be contained within
relaxed-math mode

bfloat16 dot product
● Non-deterministic in three different ways

– I don’t know of a deterministic semantics we could pick
that could be practical

● But I’d be happy to be corrected

● Proposal: Remove this instruction

Revisiting NaN bits
● Wasm’s NaN bits are a surprising exception to Wasm’s overall determinism
● Proposal: Move NaN bits nondeterminism to relaxed-math mode

– ARM’s “Default NaN mode” is considered an optimization 🤯
– On RISC-V, this is effectively the default mode 🤯
– Overhead of NaN canonicalization for eg. 4x4 matrix multiply (load input and store

output) if we canonicalize just at the stores: 5% (on a 2019 CPU), 9% (2015), 15% (2012)
– IEEE 754 NaN propagation rules are a “should” not a “shall”

● It’s intended for a debugging scheme which no popular platforms implement
● It also gets used in R for the NA value

– But Wasm’s existing NaN semantics already preclude this

– Compatible with NaN boxing
– Compatible with JS engines
– Engines that don’t want canonicalization overhead can use relaxed-math mode

Summary
● Remove relaxed_dot_bf16x8_add_f32x4 (aka bfloat16_dot_product)
● Rename relaxed_madd (aka relaxed_fma) to alternate_fma.
● Rename relaxed_nmadd (aka relaxed_fnma) to alternate_fnma.
● Rename the remaining relaxed_* to alternate_*.
● Change the binary opcodes for alternate_* (after the 0xfd prefix) to start at 0x100000 instead of 0x100.
● Define deterministic semantics for all alternate_* instructions:

– For swizzle, laneselect, q15mulr_s, and dot_i8x16_i7x16_*, define them to have some agreeable deterministic semantics
TBD.

– For fma/fnma, define them as IEEE 754 fusedMultiplyAdd (single rounding), adjusted for the negation in fnma and for Wasm’s
overall exception, rounding mode, and NaN stance.

– Define the rest to be identical to their non-alternate_ counterparts.
● Change Wasm’s NaN semantics:

– The result of any non-bitwise floating-point instruction when it returns a NaN is a canonical NaN (sign bit is zero, quiet bit is
one, remaining mantissa bits are zero).

● Define a “relaxed-math mode”. In this mode:
– All the alternate_* instructions have the non-deterministic semantics proposed in the relaxed-simd proposal.
– Wasm’s NaN behavior is nondeterministic, using the NaN semantics previously specified in the core spec.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

